
1 of 6

Software interface for fiber positioner testing on LBNL fiber view camera
BigBoss-doc-174

Silber, Perry

2013-06-07

Overview
This document describes a software interface for testing fiber positioners at LBNL. The communication is

between two pieces of software:

1. "master" script, coded by LBNL in Matlab or similar

2. "positioner controller" software, specific to the fiber positioner hardware, in any convenient

language

Communication pipes
The communication between the two pieces of software is done via 4 ascii text files:

1. xy_meas.txt ... contains latest (x,y) position measured by master

2. move_cmd.txt ... contains latest move commanded by master

3. motion_status.txt ... contains flag indicating whether the positioner is in motion

4. calibration.txt ... contains measured calibration parameters

The positioner controller shall monitor xy_meas.txt, move_cmd.txt, and calibration.txt

for changes, either by an event callback or by regular polling at 200-500 ms intervals. The positioner

controller may not alter any of these three files; only the master may do so.

The master similarly monitors motion_status.txt, and may not alter it; only the positioner

controller may do so.

The text files will all reside in a single convenient directory.

File specifications
For all tabular data in the files:

 Whitespace column separation

 Whitespace may be 1 or more spaces

 All numbers are decimal

 Floating point numbers are indicated by having a decimal point, followed by at least one digit

 There may be a varying number of significant digits

 Decimal points are indicated by the period symbol '.' (not by comma symbol ',')

 Integers are indicated by lack of a decimal point

 Strings are to be exactly as defined below

2 of 6

Line indexing and incrementation
Each new message in a file is exactly one line. At the prefix of the line are:

1. Timestamp (described below)

2. Line index number (integer)

New lines are always appended to the end of the file. The line index number increments by one with

each line. Thus the latest command or message written to the file is always the last line, and always has

the highest index number. Inherently, each communication file is also a complete history log.

Line indexing begins at 1. For certain tests (e.g. lifetime performance) the number of lines might exceed

65k, so code must handle line index numbers as 32 bit integer or greater.

Timestamps format
Timestamps conform to ISO 8601. They are exactly 15 characters, in the format yyyymmddTHHMMSS,

where:

 yyyy ... year

 mm ... month

 dd ... day

 HH ... hour (24-hour clock system)

 MM ... minute

 SS ... second

EXAMPLE, the timestamp for March 6, 2013 at time 14:56:50

20130306T145650

Prefixing example
For a series of three commands named "message1", "message2", "message3", written at ~1

minute intervals, the file would look like:

20130306T145650 1 message1

20130306T145750 2 message2

20130306T145850 3 message3

File formats
The file formats are specified below. In all example code of this section, only one line is shown. The

incrementing line index number will be arbitrarily indicated by the number 42. In such a case the file

would in fact have 41 older entries in lines above it; line 42 would be the last and most recent in the file.

xy_meas.txt

 writer: master

 reader: positioner controller

 4 columns

o 1st column: timestamp

3 of 6

o 2nd column: index number

o 3rd column: floating point X value, unit mm

o 4th column: floating point Y value, unit mm

 EXAMPLE, where master has measured position at (3.214, -11.973) mm

<lines 1-42 not shown>

20130306T085055 42 3.214000 -11.97300

move_cmd.txt

 writer: master

 reader: positioner controller

 5 columns

o 1st column: timestamp

o 2nd column: index number

o 3rd column: move command string

 Valid move command strings for all positioners are:

abs_xy ... move to an absolute cartesian (x,y) position, units mm

rel_dxdy ... move by a relative cartesian amount (Δx, Δy), units mm

 Additionally for θ-φ type positioners:

abs_R1R2 … rotate stages to an absolute (R1,R2) position, units deg

rel_dR1dR2 ... rotate stages by a relative amount (ΔR1, ΔR2), units deg

 R1 is the central rotation axis

 R2 is the eccentric rotation axis

 Additionally for R-θ type positioners:

abs_TR … move stages to an absolute (θ,R) position, units (mm,deg)

rel_dTdR ... move stages by a relative amount (Δθ, ΔR), units (mm,deg)

 Optionally, if a positioner implements an internal homing routine, such as

finding encoder limits of motor travel by hitting hardstops:

homing … positioner performs its own internal homing sequence, and

arguments of columns 4, 5 are disregarded

o 4th column: floating point value for 1st coordinate, unit mm or deg

o 5th column: floating point value for 2nd coordinate, unit mm or deg

 EXAMPLE, moving to the (x,y) position (-2.152,6.401) mm

20130306T085159 42 abs_xy -2.152000 6.401000

 EXAMPLE, moving relatively by an amount Δx = 0.013 mm, Δy = -0.002 mm

20130306T085209 42 rel_dxdy 0.013000 -0.002000

 EXAMPLE, moving to the (R1,R2) position (10°,-47°)

20130306T085217 42 abs_R1R2 10.00000 -47.00000

 EXAMPLE, moving relatively by an amount ΔR1 = -30°, ΔR2 = 0°

20130306T085230 42 rel_dR1dR2 -30.000000 0.000000

 EXAMPLE, tell a positioner (which is capable) to re-seek its hardstops / physical limits

20130306T085230 42 homing 0.000000 0.000000

4 of 6

motion_status.txt

 writer: positioner controller

 reader: master

 3 columns

o 1st column: timestamp

o 2nd column: index number

o 3rd column: single string value indicating whether positioner is currently moving

 moving ... positioner is currently in motion

 stopped ... positioner is currently stopped

 outofrange ... last move command was out of the positioner's travel range

 belowresolutionlimit ... last move command was smaller than

smallest possible step size

 outofrange and belowresolutionlimit are a subset of, and

imply, stopped

 EXAMPLE, where positioner is about to move, so controller sets the moving flag

20130306T085415 42 moving

 EXAMPLE, where positioner has completed its motion, so controller sets the stopped flag

20130306T085424 42 stopped

 EXAMPLE, where positioner has received a command to a target point it cannot reach

20130306T085427 42 outofrange

 EXAMPLE, where positioner has received a tiny relative move command to a target point closer

than the smallest possible step

20130306T085430 42 belowresolutionlimit

calibration.txt

The number of columns in a calibration file depends on how many calibration values a particular

positioner design requires. After the line index and timestamp, key/value pairs are added in succeeding

columns.

 writer: master

 reader: positioner controller

 2 + 2*N columns

o N = number of key/value pairs

o 1st column: timestamp

o 2nd column: index number

 subsequent columns (3 through N)

o ith column: key ... single unbroken string token

o (i+1)th column: value ... single unbroken token, type specified below

o Keys / values for θ-φ positioner:

 LENGTH_R1 / floating point number, length of R1 arm, unit mm

 LENGTH_R2 / floating point number, length of R2 arm, unit mm

 OFFSET_R2 / floating point number, φmeas - φnominal, unit deg

5 of 6

 If either length is not known, its value is set to -1, and positioner controller

should use its default length

 If the φ offset angle is not known, its value is set to 0

o Keys / values for other positioner designs:

 TBD

 EXAMPLE, θ-φ positioner, neither arm has been measured yet, use defaults instead

20130306T085307 42 LENGTH_R1 -1.00000 LENGTH_R2 -1.00000

 EXAMPLE, θ-φ positioner, central axis arm measured to be 3.512 mm, eccentric arm 3.498 mm

20130306T085907 42 LENGTH_R1 3.51200 LENGTH_R2 3.49800

Typical sequence of events for a move
1. master commands fiber view camera to measure current (x,y) position

2. master updates (x,y) in xy_meas.txt

(2b. positioner controller may optionally read in this measured position)

3. master updates move_cmd.txt with the next desired move

4. positioner controller parses the move command in move_cmd.txt

5. positioner controller updates motion_status.txt to contain the string: moving

6. positioner controller executes move

7. when motion is complete, positioner controller updates motion_status.txt to now

contain the string: stopped

8. return to (1)

Notes on calibration
The master script will handle the position and angle offsets which occur due to mounting of the

positioner hardware relative to the fiber view camera's CCD. Therefore the positioner controller may

consider itself to exist in a standard Cartesian coordinate system centered at (0,0) with its x axis along

0°. The positioner controller does not need to account for position and angle offsets on the CCD.

It is assumed that the positioner implements travel limits on both axes, whether these are hard or soft

limits.

As an example of typical operation of a θ-φ positioner, the master will:

1. request a series of rel_dR1dR2 moves, stepping through rotations of first the central axis,

and then the eccentric axis

2. calculate best-fit circles from these measurements, to infer:

a. (x,y) offset on the CCD

b. θ offset (i.e., clocking of positioner) on the CCD

c. lengths of R1 and R2 arms

3. write the R1 and R2 lengths to calibration.txt

4. begin its sequence of requesting abs_xy and rel_dxdy moves

6 of 6

Alternative or more elaborate calibration sequences can be handled by using different key/value pairs,

as described in the calibration.txt section above. These shall be defined and added to this document

based on feedback from positioner designers.

